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I. Introduction

Simulation of multibody dynamics systems - such as robotic manipulators, automo-

biles maneuvering and satellites deployment - remains a challenge to the dynamist due to

its increasing roles in design improvements, control and safe operation. Because of sub-

stantial progress made during the past three decades in formulation 1-19, constraint treat-

ment and solution techniques 21-36 and the availability of multibody dynamics simulation

packages 37-42, it has now become almost a routine practice to perform realistic modeling

and assessment of some practical problems such as mechanical linkages and manipulations

of robotic arms if multibody components consist mostly of rigid bodies, discrete springs and

dampers (see, e.g., Haug15). However, substantial advances in modeling, formulation and

computational methods are necessary in order to develop a real-time simulation capabil-

ity for ground vehicle maneuvering dynamics, robotic manipulations and space structures

deployment/assembly.

Specifically, improved modeling of flexibility for localized motions and geometric non-

linearities, material nonlinearities and contact/friction phenomena, robust and accurate

treatment of the system constraint conditions and efficient use of emerging computer hard-

ware/software technology continue to offer intense research opportunities. Thus, the de-

velopment of a real-time multibody dynamics simulation capability requires a concerted

integration of various modeling, formulation and computational aspects. These include:

selection of a data structure for describing the system topology, computerized generation

of the governing equations of motion, implementation of suitable solution algorithms, in-

corporation of constraint conditions and easy interpretation of the simulation results. Of

these, this chapter is concerned with three computational aspects of multibody dynamics

simulation: direct time integration of the governing equations of motion, stabilization of

constraint solution process and their computer implementation aspects.

From the computational viewpoint, multibody dynamics (MBD) problems are distinct

from the structural dynamics problems in that the solution of MBD problems must also



satisfy, at eachtime integration step, the attendant kinematic and equilibrium constraints.
This hasmotivated many dynamists to developvarioustechniques,in addition to direct in-
tegration algorithms, for accurately and efficiently handling the system constraints. Hence,

reliability and cost of existing MBD simulation packages have been strongly affected by

how efficiently and accurately the constraints are preserved during the numerical solution

stage.

In general, there have been two types of direct time integration algorithms for the

transient response analysis of dynamical systems: explicit and implicit algorithms (see,

e.g., Hughes and Belytschko 43, Park 44 and Belytschko, Englemann and Liu4S). Currently,

implicit algorithms appear to be favored by many MBD specialists when both the gen-

eralized coordinates and the constraint forces are treated as the unknowns. In this case,

the corresponding formulations incorporate the system constraints by the Lagrange mul-

tipliers method. It has been well known that the resulting Newton-like solution matrix is

stiff. This has led to implicit time discretization of the constraint-augmented equations

and simultaneous solution of both the generalized coordinates and the Lagrange multipli-

ers. This approach has been extensively investigated by Gear 21, Baumgarte 22'29 Orlandea,

Chase and Calahan 23, Petzold 27, Nikravesh 31, among others. Because these methods solve

both the generalized coordinates and the constraint forces simultaneously, they will be

called the simultaneou_ solution methods in this chapter.

On the other hand, if the constraints are eliminated so as to reduce the number of

unknowns, it is possible for one to employ either implicit or explicit algorithm. For this

situation, one may invoke either a geometric or algebraic procedure to streamline the re-

sulting equations of motion if the system topology is an open tree. In essence, geometric

procedures have utilized an open-tree topology such as the use of the incidence matrix by

Wittenburg _° and the body array matrix by Huston 1°. Some of the proposed algebraic

procedures include the singular decomposition by Walton et al 2°, the use of the general-

ized speed of Kane and Levinson 2°, the coordinate partitioning technique by Wehage and

Haug 2s, the selection of independent coordinates through the natural-coordinate formu-

lation of Garcia de Jalon et al ss and the so-called order-N procedures of Armstrong 11,

Hollerbach 12, Schwertassek and Roberson lr, Orin, et al2s, among others.

As the complexity of MBD systems increases, the simultaneous solution methods

have become less attractive. This is due to matrix ill-conditioning especially for the so-

called index two and higher index problems (see, e.g., Ref. 27 and Brenan, Campbell

and Petzold 46 for the definition of index for constraint characterization), divergence of the

solution away from the constraint conditions, and ultimately, due to a large size of the

equations that must be handled. As an alternative to the simultaneous solution methods,

a series of computational methods that employ a divide-and-conquer strategy have been

developed, which are termed as partitioned solution procedures presented in Park 47, Felippa

and Park as and Park and Felippa 49. As an example, partitioned solution procedures allow

one to analyze fluid-structure interaction problems with two separate single-field analysis

packages, namely, the structural dynamics module and the fluid dynamics analyzer. At

each time integration step, one may advance the solution of structural equations of motion

by treating the fluid coupling term as an external force. Once the structural coordinates

are advanced, the fluid state variables can be advanced by treating the structural coupling
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terms as a source term. A naive partitioned procedure, however,can suffer from a lossof
accuracyaswell ascomputational stability. Thus, a combination of equation augmentation
and stabilization shouldbe devisedto recoverthe accuracylossand maintain unconditional
stability. Such a solution procedure is in contrast to a practice of embedding both the

structural and fluid dynamics attributes into a combined analysis program.

The numerical solution procedure for MBD systems which we advocate in this chapter

is termed a staggered MBD solution porcedure that solves the generalized coordinates in a

separate module from that for the constraint force. This requires a reformulation of the

constraint conditions so that the constraint forces can also be integrated in time. A major

advantage of such a partitioned solution procedure is that additional analysis capabilities

such as active controller and design optimization modules can be easily interfaced without

embedding them into a monolithic program. To this end, the rest of the chapter is organized

as follows.

After introducing the basic equations of motion for MBD system in the next sec-

tion, Section III briefly reviews some constraint handling techniques and introduces the

staggered stabilized technique 34,35 for the solution of the constraint forces as independent

variables.

The numerical direct time integration of the equations of motion is described in Sec-

tion IV. As accurate damping treatment is important for the dynamics of space structures,

we have employed the central difference method and the mid-point form of the trapezoidal

rule since they engender no numerical damping. This is in contrast to the current prac-

tice in dynamic simulations of ground vehicles by employing a set of backward difference

formulas 48. First, the equations of motion is partitioned according to the translational and

the rotational coordinates. This sets the stage for an efficient treatment of the rotational

motions via the singularity-free Euler parameters. The resulting partitioned equations of

motion are then integrated via a two-stage explicit stabilized algorithm for updating both

the translational coordinates and angular velocities 34. Once the angular velocities are ob-

tained, the angular orientations are updated via the mid-point implicit formula employing

the Euler parameters.

When the two algorithms, namely, the two-stage explicit algorithm for the generalized

coordinates and the implicit staggered procedure for the constraint Lagrange multipliers,

are brought together in a staggered manner, they constitute a staggered explicit-implicit

procedure which are summarized in Section V. Section VI presents some example problems

and discussions concerning several salient features of the staggered MBD solution procedure
are offered in Section VII.

II. Governing Equations of Motion

The Lagrangian equations of motion for mechanical systems that are free from any

constraint can be written, for the generalized coordinate component ui, as

d OL OL
-Qi, i=l...n. (1)

dt OiLi Ou i

where L is the system Lagrangian, t is the time, (") denotes time differentiation and Qi

is the generalized applied force. It is well-known that, if there are m-constraint conditions



imposed on {ui, i = 1... n}, the above equation must be modified as

d OL OL "
dt Oi_i Oui -- Qi + _ /_kBki' i= 1. . . n,

k=l

(2)

where ,_ is the Lagrange multiplier and Bki is the i-th gradient component of the k-th

constraint equation, viz, for configuration constraints

o_k k = 1...m (3)
• k(u)=0, Bki= Oui

and for motion constraints

o_Jik

4ik(u, ti)=0, Bki=_., k=l...m. (4)
uui

Therefore, regardless of the nature of constraints one may express the equations of

motion with constraints in the following form:

M B T

where M is a positive-definite matrix and c depends on the nature of constraints. For

example, for configuration constraints we have

0 0_. 0 0#. 02_
c= 2N(Nu ) (6)

and for motion constraints

c = -_--. (7)

An implicit time integration formula to solve (5) may be written as

{/t n = 8fi" + h_' (S)u" = ,_fi" + h_"

where 8 is a stepsize that is dependent on the choice of formula, and h_ and h_ are

formula-dependent historical vectors that consist of past-step solution components 48,5°.

As an example, the trapezoidal rule has the following 8 and historical vectors

{  =h/2
h_ = fi_-I + _ln--1

h_, = u _-1 + 6fa _-1

(9)

where h is the time-step increment.
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Substitution of (8) into (5) yields

B A" r_, \ Bh"+62c J
(lO)

In practice, in order to avoid pivoting and to maintain high accuracy, the solution of

the above difference equations is carried out as follows. First, since M is nonsingular for

properly formulated dynamical problems, one computes

--1 n
uu=M ru, C=M-1B T, A=BC (11)

and factors A. Second, one obtains A" by solving

)_'_ = A-'(Bu,, - r._)/62 (12)

Finally, u" is obtained from

u" = u_ - 62C)d _ (13)

It should be noted that the accuracy loss associated with the factoring of an ill-

conditioned matrix BA-1B T and the subsequent backsubstitutions can severely influence

the solution accuracy of not only the Lag'range multipliers but also the generalized coordi-

nates as seen from (12) and (13). This has motivated many numerical analysts to undertake

the development of methods for differential-algebraic systems as the recent monograph 46

and references therein attest to their rich numerical properties. It is generally agreed that

the present status of differential-algebraic methods yield robust solutions for problems of

index one, but can suffer from inaccurate solutions of the Lagrange multipliers for higher

index problems. Observe that many practical multibody dynamics problems are charac-

terized by index greater than one. Hence, the need to compute accurately the constraint

forces remains a challenge. For instance, for lock-up mechanisms that are activated when

truss structures are fully deployed in space often introduce stiff responses with nearly

singular state of BM-IB T. It is with these problems for which more robust constraint

computation algorithms are called for.

One way to improve the accuracy of constraint force computations is to adopt index

reduction strategies as discussed in Ref. 46. However, index reduction inevitably intro-

duces additional system degrees of freedom in the resulting differential-algebraic equations,

thus destroying the matrix sparsity of (5) in addition to the increased size of the matrix B.

In what follows we present an alternative approach based on a parabolic regularization of

the equations for the Lagrange multipliers, which preserves the first row of (5) and enables

us to solve _ from the parabolic differential equations.

III. Constraint Handling Techniques

As alluded to in Introduction, techniques for handling the system constraints consti-

tute a major part of solution procedures for the numerical simulation of multibody dy-

namics systems. In this section, we will first review the coordinate partitioning technique,

Baumgarte's technique and the penalty technique. The staggered stabilization procedure
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which we advocate will then be described in detail. A distinct feature of the staggered

stabilization procedure is that it can be implemented in a stand-alone module, thus can

be interfaced not only with the equation solver for rigid-body systems but with that for

flexible-body systems as well.

A. Coordinate Partitioning Technique

In the coordinate partitioning 2s'33 or singular decomposition technique 2°,3°, one se-

lects a rank sufficient part of B and partitions it as

B= [B_ BeJ, u= Lui q_J

where the rank of Bi(rn x m) is m and the subscripts (i, e) refer to internal

variables, respectively. First, we express ui in terms of ue as

(14)

and ezternal

Since we have

u_ = B.'(r_,- Beu_')

The first row of (10) reduces to

[-BT B[ T I J { BTB[} =°

(15)

(16)

where

and

(Me + TTMiT)q_ = r'_ (17)

[ ]T = B_XB,, M = M_ 0 " "' (18)
0 Me ' ru = r n

Ue

n r n _ TTr nr e = ,_ ,, + TTMiBTlr_ (19)

Once one obtains u_, one can obtain u, n from (15) and similarly A from (12). Note that

even though (17) has a smaller dimension than that of (10a), its left-hand side matrix is in

general full since T given by (18a) is in general full. Hence, unless T is a constant matrix,

one must refactor the solution matrix in (17) whenever a new T is formed.

B. Baumgarte's Technique

Baumgarte's technique 22,29 is based on the observation that the errors committed

in computing the constraint conditions (3) or (4) can either be critically damped out or

exponentially decreased as the integration process continues. Mathematically, this can be

stated for the configuration constraint equation(3) as

+ 2a¢ +/3_ = 0

or the motion constraint equation(4) as

(20)

¢ + 7# = 0 (21)



In terms of the general constraint equation augmentation as given by (5b), the pre-

ceding stabilization is equivalent to modifying c in (5b) accordingly. Hence, the technique

can be implemented within the standard augmented form of the equations of motion (5).

However, if BM-1B T is ill-conditioned, which can happen since B is in general state-

dependent, the accuracy of generalized constraint force, A, can be considerably degraded.

This can occur if any two rows of B are physically similar (i.e., when two members form

a straight line) or numerically close during three-dimensional orientations.

C. Penalty Technique

In the two constraint handling techniques outlined so far, the objective was to satisfy

the constraint condition

@=0 (22)

whose differentiated forms were augmented to the equations of motion. In the penalty

procedure, one adopts
"1

= 0 (23)

as the basic constraint equations instead of the twice-differentiated form adopted in (5).

It is noted that the penalty formulation tacitly assumes that there will be violations

of the constraint condition in actual computations as discussed in Lanczos 51. If one sub-

stitutes (23) into the governing equations of motion, the resulting equation becomes

Mfi + I BTq_ = Q (24)
e

A major drawback of the above penalty procedure is that, once an error is committed

in computing A, there is no compensation scheme by which the drifting of the numerical

solution can be corrected. This has led to the development of a staggered stabilized

procedure as described below.

D. Staggered Stabilization Procedure

To illustrate this procedure we will consider the case of nonholonomic constraints.

Instead of substituting the penalty expression directly into the governing equations of

motion, first we differentiate (23) once to obtain

0_
X =  (Ba + (251

where we assume the penalty parameter, e, to be constant.

Second, we obtain for ii from (5a) in the form

= M-'(Q - BrX) (28)

and substitute it into (25) to yield

0_
e,_ + BM-1BT,k = r x = BM-1Q + 0"_- (27)
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Notice that the homogeneous part of the above stabilized equation in terms of the

generalized constraint forces, A, has the following companion eigenvalue problem:

(7 + BM-1BT/e)Y = 0 (28)

where {_'_, k = 1... m} axe the eigenvalues of the homogeneous operator for the new

stabilized constraint equations (27). Since ")'k also dictates how the errors in the constraint

forces will diminish with time, the errors committed in the constraint conditions will decay

with their corresponding different response time constants. This physically oriented stabi-

lization property of the present technique is in contrast to that of Baumgarte's technique

wherein all the error components diminish according to a single time constant.

Third, this technique enables one to solve for A from the stabilized differential equa-

tion (27). Specifically, one now has two coupled equations, one set for the generalized

coordinates u and the other for the generalized constraint forces A, which are recalled here

from (5a) and (27) for the case of nonholonomic constraints:

ii d

0 -_- BM_IBT] {.¢_ } {Q } (29)

Note that the above coupled equations directly provide the desired differential equations

forapairof Lu AJ.

For holonomic constraints, one has several stabilization possibilities. The one we have

chosen is to integrate the governing equations of motion once to obtain

tl n -- 6M-1((_ n -- BrA ") + h_ (30)

which is substituted into

i = l(Bu + -_-)

to yield:

eA # + 6BM-'BT:_" = B(6M-'(_" + h_) +

(31)

(32)

It is observed that, even if BM-'B T is almost singular, this stabilization tech-

nique as derived in (27) and (32) would not cause numerical difficulty in computing

A since the solution iteration matrix becomes (e + 6BM-IB T) for nonholonomic cases

and (e + 62BM-'B T) for holonomic cases. It is noted that one must choose e in such

a way to maintain robust solution when BM-1B T becomes ill-conditioned by choosing

e ,_, c/[(BM-aBT)-I[ • [BM-1BT[ where c is the solution accuracy desired for A.

Integration of the above equation by the mid-point implicit rule yields the following

difference equation:

(eI q- hBM-1BT))_ n+1/4 = h(r]+_ -k r_) + _,_nA n+_/2 = 2A n+a/4 - ,k"
(33)

8



It has been shown that the staggered stabilized procedure for the solution of the
constraints offers not only a modular software packageto treat the constraints but also
has been found to yield more robust solutions compared to the techniques proposed by
Baumgarte as reported in Park and Chiou35. In particular, even when BM-1B T be-

comes nearly singular, the staggered stabilized procedure (33) gives stable and acceptable

solutions whereas the constraint forces computed by the Baumgarte's technique diverge.

IV. Solution Algorithms for Generalized Coordinates

In addition to the choice of implicit and explicit formulas, the recognition that the

equations of motion for multibody systems with constraints are not ordinary differential

equations (ODEs) (see, e.g., Petzold 2r) has placed a unique requirement in the selection

of solution algorithms for multibody dynamics problems. From the user's viewpoint, one

has the option of either employing one of the available ODE packages (see Enright 32 for

existing ODE packages) or building a special solution module. It should be noted that,

since the integration of angular velocity vector does not lead to angular orientations, one

must solve a set of kinematical equations to obtain the desired angular orientations.

In this section we describe an explicit-implicit transient analysis algorithm that ex-

ploits the special kinematical relationships of the generalized rotational coordinates vs.

the angular velocity, namely, the Euler parameters 34. The integration of the translational

coordinates and the angular velocity is accomplished by the central difference formula. It

should be mentioned that the use of the central difference formula does impose a stepsize

restriction due to its stability limit ( Wmaxh < 2) where W,naz is the highest angular veloc-

ity of the system components for rigid-body systems or the highest frequency of the entire

flexible members for flexible-body systems. The simplicity of its programming effort and

robustness of its solution results can often become compelling enough to adopt an explicit

formula, which is the view taken here.

In conventional structural dynamics analysis, explicit time integration of the equations

of motion by the central difference formula involves the following two updates per step:

( 6n+1/2 = 6,,-_/2 + hii nun+l -_ u n + hfl n+1/2
(34)

Unfortunately, this simplistic procedure is not directly applicable to the rotational part of

the equations of motion as w is not directly integrable, except for some special kinematic

configurations. This motivates us to partition Cl into the translational velocity vector, cl,

which is directly integrable and the angular velocity vector, w, which is not, and treat

them differently, viz.:

, a= (35)

The equations of motion (5a) can be partitioned according to the above partitioning:

Md 0 _i Q,, } (36)

9



where
fd- Dd(c[)- S,_(d, e)- BT)_

in which the subscripts (d,w) refer to the translational and the rotational motions, re-

spectively, f is the external force vector, D is the generalized damping force including the

centrifugal force, S is the internal force vector including member flexibility, q is the angular

orientation parameters, B d and Bw are the partition of the combined gradient matrices

of the constraint conditions (3) or (4) that are symbolically expressed as

B = BN + BH, )_ = AN + An (38)

To effect the body-by-body integration for the rotational degrees of freedom, we par-

tition & further into

r (39)

where &O') is a (3xl) angular acceleration vector for the j-th body,

&(J) L (j) (J) (J) J-- OJ1 ,_'d2 '033 J (40)

We now present the update algorithm for both translational and rotational coordi-

nates.

A. Update of Translational and Angular Velocity

First, assume that d "+1/2 and qn+l/2 are already computed so that we can compute

_,,+1/2 and &,+1/2 by (36), namely,

_n+l]2 D:+½ + S_+½ BTx.+_
(41)

Second, we update the translational velocity and the angular velocity vectors at the step

(n+l) by

{ d "+1 cl" hd n+1/2= + (42)
t,d n+l = Oj n + h_J n+l/2

Third, we update the translational displacement, d, by

dn+3/2 = d"+I/_ +hd n+l (43)

However, the updating of the angular orientation requires somewhat involved computa-

tions. To this end, we will employ the Euler parameters and update them accordingly.

10



B. Update of Euler Parameters and Angular Velocity

As mentioned in conjunction with a direct use of (34) for integrating the rotational equa-

tions of motion, it is necessary for one to introduce a set of generalized coordinates whose

time rate can be related to the angular velocity. To this end, we employ the four-parameter

Euler representation of the angular velocity for each body as (see, e.g., Wittenburg:°):

:[oCl= _ q=A(w)q, q= [q0 ql q2 q3J T (44)

that is subject to the constraint:

qTq = 1 (45)

where
0 --_3 _2

_3 0 --_J1

-w2 Wl 0

6d "- [W 1 02 2 _3J T (46)

and the nodal-designation superscript is omitted for notational simplicity.

We adopt the mid-point implicit procedure to integrate the Euler parameters:

dln+: = A(w,,+a). qn+:

qn+l __ qn+l/2 + h_ln+l-- 2

qn+3/2 __--2q,,+1 _ qn+l/2

(qn+3/2)T qn+3/2 __ 1

(47)

It should be noted that the mid-point implicit update is no more costly than any explicit

as the solution matrix inversion can be explicitly obtained.

Finally, once qn+3/2 is computed from (47), it is often required to compute the body-

fixed basis vector, b = [bl b2 b3J T in terms of the inertial basis vectors, e =

[ el e2 e3 J T. These two vectors are related by

b = Re (48)

where

R ._.

2(q02 + ql2) - 1

2(qlq2 -- q0q3)

2(qlq3 + q0q2)

2(qlq2 + q0q3)

2(q02 + q2)_ 1

2(q2q3 -- qoql)

2(ql q3 - qoq2 ) ]

2(q2q3 + qoql) ]

2(q02 + q32) -- I J

(49)

11



C. Update of cl, w, d, q at the (n + 2)-step

So far we have advanced from the step (n+l) to the step (n+3/2). In other words, we have

advanced only half of the total step. For the next step, viz, the step (n+2) from (n+3/2),

we employ the following sequence of computations:

&n+l - -M-1 D_+I + S_+1 - BTA"+I
D_, +1 + - B,,,,ksn+l T n+l (50)

h_,+ a
d"+a/2 = d"+l/2 +
wn+3/2 = wn+l/2 + h& n+l

d"+ = d"+ 1 + hd ''+3/2

_ln+3/2 : A(wn+a/2)qn+3/2

hq.+3/2qn+3/2 = qn+l +

qn+2 __ 2qn+3/2 __ qn+l

(qn+2)Tqn+2 = 1

(51)

(52)

Note that we do not use d n+3/2 and q,+a/2 in advancing from the step (n+3/2) to the

present step (n+2) in computing d n+2 and qn+2. Instead, we employ d n+l and qn+l, hence

the name two-stage staggered explicit procedure 34. The net result is that, even though we

take a full step (h instead of h/2), we only advance half the step at a time. In other words,

we evaluate the acceleration and the angular acceleration vectors twice for each full step.

V. Implementation

We will now outline the implementation aspects of the the partitioned MBD solution pro-

cedure. The procedure is implemented into two separate integration modules: generalized-

coordinate integrator (CINT) and Lagrange multiplier solver (LINT). The generalized-

coordinate integrator employs a two-stage modified form of the central difference method

for updating the angular velocity vector and the mid-point implicit rule for updating the

angular orientations via the Euler parameters. The Lagrange multipliers solver adopts a

staggered form of the mid-point implicit method.

A. Generalized-Coordinate Integrator (CINT)

The module receives f_ = BTA n from LINT and advances the solution of the MBD

equation (1) from time t n to t n+l. At each integration step, CINT performs the following

computations.

Given:

Compute:

Advance:

p" = (el "-1/2, d n, ¢0 '_-1/2, q") and gn = (w",f,_ = BTAn))

_n and ¢.b" by (41)

d n+l/2 -- d n-l�2 --b hcl nd"+ 1 = d n + hd n+l/2
(53)

12



4 = ½[I + q- A = I + _(w_ + _ + w_)

qn+l = 2_i-+I/2 _ q. (qa+1)T. q.+l __ 1

(54)

Output: pn+l = (d "+1/2, d-+l, ¢a,+1/2, qn+l)

Module Invoke: Call CINT (p", g", h, p,+l)

where h is the stepsize and A(w) is given by

I O --_I --_2 --_3 I

1 w 1 0 w 3 -w 2

0

_3 w2 --Wl 0

(55)

and _1"+1/2 is an intermediate vector and (54c) must be solved to obtain q,+l so as to to

satisfy the linear dependency constraint, qTq _.. 1.

Given:

Compute:

Advance:

B. Lagrange Multiplier Solver (LINT)

This module receives (el, d, w, q) from CINT and performs the following computations.

g.+l/2 ._ (d n+l/2, dn+l/2, ¢,on+112, qn+l/2 An)

B "+1/2, BM-1B T and r_ +a/2 by (3) and (4)

{ _.+I/4 = (eI + _BM-'BT)-i(eX n + _(r_ + r_+'/2))
,_n+i/2 = 2,_n+l/4 _ ,_n

f_+1/2 = (Bn+I/2)T.._n+l/2

(56)

Output: X.+1/2, f]+1/2

Module Invoke: Call LINT (_,-,+1/2, h, .X n+1/2, f]+l/2)

C. Two-Stage Explicit-Implicit Staggered Procedure

In order to evaluate _n+l, wn+l must be known. Notice from the preceding section that

only &n+l/2 is available. Because inaccurate treatments of the gyroscopic damping and the

centrifugal force terms can lead quickly to computational instability in computing d_n+l,

it is not advisable to obtain w n+l by extrapolating with ¢0n+1/2 and w n-1/2. To mitigate

13



this difficulty, we advance only to the next half step, at each CINT and LINT call. This

is illustrated as follows:

t_t n

Call CINT (p", g", h, pn+l)

Call LINT (_,+1/2, h, A n+1/2, f_+l/2)

t=t"+h/2 (n_--n+l/2)

Call CINT (p,+1/2, g,+1/2, h, p,+3/2)

Call LINT (_,+1, h, A "+1, f_+l)

t=t_+h

Note that

= f +i/2)

together with
_ q.+1/2)pn+l/2 (el", d n+1/2, w",

provides the necessary input data to compute _n+l/2 and &n+l/2 in the second call of

CINT in the above calling sequence. In summary, the present procedure requires two

function evaluations and two A-solutions per each full step, hence the name "two-stage

explicit-implicit staggered procedure".

VI. Numerical Examples

The two modules, the generalized coordinate integrator (CINT) and the Lagrange multi-

pliers solver (LINT), have been implemented in Fortran 77. In solving the following three

example problems, we have incorporated the constraint conditions through the use of La-

grange multipliers instead of eliminating the constraints. It is therefore necessary to solve

the governing equations of motion in a way that satisfies the constraint equations. Hence,

efficient and accurate solutions of these problems will confirm not only the viability of the

present integration procedure for the solution of the multibody equations of motion with

or without constraints but also the constraint stabilization procedure in their combined

totality.

A. Plane Three-Link Manipulator

The first problem tested is a simplified version of the seven-link manipulator deployment

problem 52. The three links are initially folded and, for modeling simplicity, between the

two joints is a coil spring which resists a constant deploying force at the tip of the third

link. Also, the left-hand end of the first link is fixed through the same coil spring to the

wall. These three coil springs are to be locked up once the links are deployed straight. The

deployment sequence of the manipulator is illustrated in Fig. 1. The time-discretized dif-

ference equations both for Baumgarte's technique and the staggered stabilization technique

have been solved at each time increment by a Newton-type iterative procedure to meet
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a specifiedaccuracy level. Hence, the performanceof the two techniques can be assessed
by the averagenumber of iterations taken per time increment. This is presented in Fig.
2 for the accuracy of 10-4. Notice that the staggeredstabilization technique requires on
the averageabout 4.5 iterations per step, whereasBaumgarte's technique requires about
22 iterations per step.

Note that Baumgarte's technique fails to convergefor time, t _ 1.1 as manifested in Fig. 2

because the rows in B become numerically dependent upon one another when the links are

in a straight configuration. This corroborates the theoretical prediction of non-convergence

whenever the solution matrix, BM-1B T, for Baumgarte's technique (see Eqs.(5b), (20)

and (21)) becomes singular. On the other hand, the staggered stabilization technique still

converges within 30 iterations, because it overcomes this singularity difficulty, since ,k still

exists, as can be seen from Eqs. (27) and (32).

It should be noted that, in order to avoid such ill-conditioning, one must differen-

tiate the constraint equations once or twice more and recast the resulting higher-order

constraint equations in terms of first-order equations with increased number of equations.

This process is known as an index reduction strategy 46. Thus, one must restructure the

augmented equations of motion (5) with the net result of increased solution variables.

Other techniques involve singular value decompositions, e.g., as advocated by F/ihrer and

Leimkuhler 53. On the other hand, the present staggered stabilization technique overcomes

the ill-conditioning difficulty without restructuring the governing equations of motion. In-

stead, the constraint equations are enforced in a separate module by the parabolically

regularized equations for the Lagrange multipliers as derived in (27) and (32).

Although not reported here, the same relative performance has been observed for different

accuracy levels, i.e., for the accuracy of 10 -5 and 10 -6 .

From this test problem, we conclude that the staggered stabilization technique yields

both improved accuracy over and greater computational robustness than the Baumgarte

technique. In addition, the staggered stabilization technique offers software modularity in

that the solution of the constraint force, )_, can be carried out separately from that of the

generalized displacement, q. The only data each solution module needs to exchange with

the other is a set of vectors, plus a common module to generate the gradient matrix of the

constraints, B. However, one should be cautioned not to extrapolate blindly to complex

problems the results of the present simple examples. Further judicious experiments are

needed in applying the present staggered stabilization technique to complex production-

level problems before it can be adopted for general applications in multibody dynamic
simulations.

B. Three-Dimensional Double Pendulum

The second problem with which we have tested the present procedure is a spatially moving

double pendulum as shown in Fig. 3. The governing equations of motion become those of

two separate rigid bars, except they are connected by two spherical joints. From Fig. 3
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we have the the following quantities:

d z'= -- X = O,
2

i=1, 2. (57)

M__diag{m 1, j1, m 2, j2} (58)

I ½_lx 0 0 ]B = I 1-1 1 ~2-_z x -I -_z x
(59)

fl } fiFw = f2 , = -

0

0

0

J2 -
Ogst_Jl(J3 -- J1)

- J2)

, i=l, 2. (60)

_i _. {d, d) }i, ji = [_, /), _]r, 0)i = [_1, 0_2, _3] T

A m_ [A1, A2 , A3 , )_4, )t5, )_6] T

(61)

(02)

In the preceding equations, ½z is the vectorial distance from the center of the bar to

the spherical joint constraints, m and J are the three translational and rotatory inertia

matrices, _. is the skew symmetric matrix formed by the three components of z, × implies

a vector cross multiplication, and the superscript designates the i-th bar.

The pendulum is originally positioned in a gravity field with initial horizontal angular

velocities (w(, 1) = w_ 2) = 1). Figure 4 shows the spatial trajectories of the two mass centers

as projected on the horizontal surface and on the vertical plane. It is noted that the two

trajectories form a similar pattern. The constraint forces and angular velocities, although

not reported herein, exhibit patterns that are analogous in their characteristics for the two

joints and two mass centers, respectively.

We have performed convergence studies by using different stepsizes h. Numerical evalua-

tions indicate, as with the rigid-link problem, that when the stepsize samples more than

20 per period, the present procedure yields both good accuracy and stability.

C. Open-Loop Torque for Three-Link Manipulator

The third problem is a three-link manipulator maneuvering under a specified nonholonomic

tip velocity constraint. For this problem, both rigid links and flexible links with four

beam elements per link have been investigated. The flexible beam was modeled with a

constant-strain Timoshenko beam element that allows large rotations. The three joints are

modeled as spherical ones and the Lagrange multipliers have been introduced to enforce
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the joint constraints and well as the nonholonomic constraint at the martipulator tip. The

trajectories of the manipulator and the tip velocity specification are shown in Figs. 5

and 6. The corresponding joint torques for the rigid and flexible links are also shown in

Figs. 7 and 8, respectively. Note that even though there exists little difference in the two

trajectories of the rigid and flexible cases, there are significant differences in the open-loop

joint torques. These will play an important role in the design of controller for vibration

suppression in the manipulator arms.

VII. Discussions

In this chapter, we have presented a computational procedure for direct integration of the

multibody dynamical (MBD) equations with constraints.

Because of its step-advancing nature, the procedure is labeled as a two-stage staggered

explicit-implicit algorithm: explicit for solving the generalized coordinates (CINT) and

implicit for Lagrange multipliers to incorporate constraints (LINT). Our numerical exper-

iments indicate that it is essential to enforce the linear dependency constraint condition

on the Euler parameters at each integration step.

Numerical experiments reported herein and additional applications conducted so far in-

dicate that the present procedure yields robust solutions if the stepsize gives more than

twenty samples for the period of the apparent highest response frequency of a given multi-

body system. Hence, the present procedure appears to have accomplished the following:

• For closed loop multibody systems and/or problems with complex topology wherein it

is practically inadvisable to eliminate the constraints, the present procedure facilitates

a straightforward construction of the governing equations of motion with appropri-

ate constraints. The generalized coordinates and the system open and closed loop

Lagrange multipliers can then be solved by the present procedure in a partitioned

manner.

• For problems that involve lock-up mechanisms or similar discontinuities_ the present

procedure appears to overcome numerical difficulties encountered in using the Baum-

garte stabilization. This may be an important impetus for applying the present pro-

cedure for the simulation of deployment dynamics of space structures.

• The angular velocity is obtained by an adaptation of the central difference algorithm

in a two-stage form and the update of angular orientations is based on the Euler pa-

rameters by adopting the mid-point implicit formula. Both of the integrators conserve

the system energy, which is important when the multibody simulation package is to be

interfaced with an active control synthesis module. This is because stability margins

of active control systems are sensitive to the system damping characteristics either

physical or numerical.

The present MBD solution procedure is implemented into two separate modules: the

generalized coordinates solver (CINT) and the constraint Lagrange multiplier solver

(LINT). Hence, the task for interfacing of the present MBD solution modules with

additional capabilities such as active controller, observer and other analysis and design

software modules becomes relatively straightforward. Such software architecture is
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in contrast to most of the existing programming practice wherein several analysis

capabilities are embedded into a single monolithic program.

Applications of the present procedure to flexible multibody systems are currently being

carried out and preliminary results are quite encouraging. We hope to report on the results

of flexible-body dynamics as well as on large-scale multibody problems in the near future.
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